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Solitons in coupled waveguides with quadratic nonlinearity
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We consider a model of two linearly coupled second-harmonic-generating waveguides. The analysis is
focused on the case of no walkoff and full matching. We demonstrate existence of a bifurcation that transforms
obvious symmetric soliton states into nontrivial asymmetric ones. The bifurcation point is found exactly, while
a full analytical description of the asymmetric solutions is obtained by means of the variational approximation.
Comparing this with numerical results generated by the shooting method, we conclude that, in a part of the
range where the asymmetric states are predicted, the analytical approximation provides very good accuracy,
while in another part, the asymmetric solitons disappear. Whenever they exist, however, direct partial differ-
ential equation simulations demonstrate that they are stable, while the symmetric ones are not. We also
demonstrate that the asymmetric solitons remain stable if walkoff is added. The soliton states found here can
be used for optical switching.@S1063-651X~97!11105-9#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The study of solitons in waveguides with quadratic no
linearity has recently attracted a lot of attention~see, e.g.,
@1–15#!. The analogy with nonlinear optical fibers sugge
that essentially new soliton states may be expected
parallel-coupled waveguides. Thus far, coupling effects w
considered in terms of cw propagation in a quadratica
nonlinear waveguide coupled to a linear one@13#. Very re-
cently, some direct simulations of the pulse evolution in
pair of coupled waveguides with a mixed quadratic-cu
nonlinearity were reported in@14#, but solitary-wave states
were not considered there.

The objective of the present work is to initiate study
solitons in two linearly coupled second-harmonic-generat
~SHG! two-dimensional waveguides. We will, chiefly, con
fine ourselves to the simplest case, when the waveguide
identical, and the beams in them are strictly parallel. Ho
ever, we will also demonstrate that stable solitons found
this work survive if the spatial walkoff, produced by a mi
alignment between the beams, is added to the model,
vided that it is not too strong.

Equations describing copropagation of the fundame
harmonic~FH! u and second harmonic~SH! v in the linearly
coupled waveguides can be obtained as a straightforw
generalization of the well-known equations for the sing
waveguide@1#:

iu1z1 idu1x1
1

2
u1xx2qu11u1* v152Qu2 , ~1!

2iv1z12idv1x1
1

2
v1xx2v11

1

2
u1
252Kv2 , ~2!
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iu2z2 idu2x1
1

2
u2xx2qu21u2* v252Qu1 , ~3!

2iv2z22idv2x1
1

2
v2xx2v21

1

2
u2
252Kv1 , ~4!

where the subscripts 1 and 2 pertain to the first and sec
waveguides,z andx being, respectively, the propagation an
the transverse coordinates in them~we refer to the more
realistic case of spatial solitons!, andd is the walkoff param-
eter. The second derivatives and the nonlinear terms in E
~1!–~4! account for, respectively, diffraction and FH-S
conversion. The parameterq measures the phase mismat
between the two harmonics, the system being fully matc
at q51. The terms on the right-hand sides represent the
ear coupling between the waveguides,Q andK being the FH
and SH coupling constants.

In this paper we will concentrate on the fully matche
case,q51, and, moreover, we will assume equal coupli
constants,K5Q ~the latter may be justified if the separatio
between the waveguides is sufficiently small!. Actually, it
will be seen below that the latter condition, alongsi
q51, is necessary to achieve full matching of the two h
monics in the coupled waveguides. A more general case~in
particular, the caseK50, which corresponds to the case of
large separation between the waveguides! will be considered
elsewhere. In this paper, we will consider mainly the n
walkoff case,d50.

Thus we are dealing with the model controlled by t
single parameterQ. First of all, we will consider stationary
solutions by dropping thez-derivative terms and assumin
all the variables real. The stationary version of Eqs.~1!–~4!
~with q51, K5Q, and d50) has an obvious symmetri
solution ~corresponding to the classical solution obtained
@16#!,

u1,256A2v1,2, ~5!
6134 © 1997 The American Physical Society
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~where the sign is the same for both values of the subscr!,
and

v15v25
3

2
~12Q!sech2SA1

2
~12Q!xD , ~6!

which exists provided thatQ,1. Since special exac
solitary-wave solutions to the SHG equations have alw
been the focus of attention@1#, it may be relevant to mention
that, in the general case (qÞ1 , KÞQ), an exact sech2 sta-
tionary solution to Eqs.~1!–~4! exists only at the mismatch
values q511Q2K, when the solution is symmetric a
above, andq512Q2K, when the solution is antisymmetri
in its FH component,u152u2, v151v2.

A nontrivial issue is the search for asymmetric solutio
Asymmetric solitary waves have been studied in detail i
similar problem for nonlinear dual-core optical fibers~direc-
tional couplers! with the cubic~Kerr! nonlinearity, see, e.g.
@17–24#. It was found that~using notation similar to tha
adopted here!, at large values of the coupling constant, t
symmetric solitons are unique and stable solutions. Ther
a critical value of the coupling constant, at which a bifurc
tion takes place: below this value, the symmetric solution
unstable, but there exist two nontrivial stable asymme
solutions~which are mirror images of each other!. The bifur-
cation was shown to be slightly subcritical@18#, i.e., the
asymmetric solutions appear at a value of the coupling c
stant which is slightly larger than the above-mentioned cr
cal one. In a tiny region between these two values, both
symmetric and asymmetric solutions are stable~in this re-
gion, there also exists an additional pair of intermediate
stable asymmetric solutions!.

In @18#, it was shown that the bifurcation and the who
parametric plane of the soliton solutions could be obtain
with a fairly high accuracy~as compared to numerical re
sults!, in an analytical form by means of the variational a
proximation ~VA !. It is necessary to mention that VA wa
recently applied to description of stationary soliton solutio
in the singleSHG waveguide@15#; the corresponding ana
lytical results were very close to the numerical ones. Th
the results of@15# and@18# strongly suggest applying VA to
the present problem too. This will be done below, paralle
looking for stationary solitary-wave solutions by the sho
ing method. VA predicts asymmetric solitons in the regi
21,Q,3/8. On the other hand, the shooting produces s
solutions at~approximately! 20.3,Q,0.35. The shape o
the numerically found asymmetric solitons is fairly close
the analytical prediction. However, forQ,20.3, the shoot-
ing method fails to generate asymmetric solitary waves
this region, we can find numerically only periodic waves.

As for the bifurcation point, it will be found both by
means of VA, which yields the bifurcation~critical! value
Qcr53/8, andexactly, Qcr55/13. Thus the error of VA in
determining the bifurcation point is only 2.5%.

Stability of both asymmetric and symmetric solitons w
be tested by direct simulations of Eqs.~1!–~4!. We will see
that, whenever the asymmetric solitons exist, they are sta
The symmetric solitons are always found to be unsta
when they coexist with the asymmetric ones, which is a na
ral consequence of the bifurcation@18#. Moreover, by simu-
lating development of the instability of the symmetric solit
t
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over a long propagation distance, we observe a trend to
rearrangement into the stable asymmetric soliton. To
right of the bifurcation point~where the asymmetric soliton
do not exist!, the symmetric ones are stable. Thus this
similar to the situation in the dual-core optical fibers with t
cubic nonlinearity@17,18#. Where the asymmetric solitary
wave solutions do not exist forQ,20.3, the mode of insta-
bility of the symmetric solitons is oscillatory, showing
trend to their complete decay into dispersive radiation.
nally, we will also simulate the asymmetric solitons in th
case when the walkoff parameterd is nonzero, but small.

II. THE ANALYTICAL RESULTS
AND NUMERICAL CHECK

In accordance with what was said above, we will conce
trate on the most important case of full matching,q51 and
K5Q ~in this section, we will also setd50). In this case, it
is easy to see that the stationary version of Eqs.~1!–~4!
allows the substitution6v1,25u1,2/A2, cf. Eq. ~5!. Then,
there remain two equations,

1

2
u192u11

1

A2
u1
21Qu250 , ~7!

1

2
u292u21

1

A2
u2
21Qu150 , ~8!

where the prime stands ford/dx.
Equations~7! and ~8! have an evident Lagrangian repr

sentation with the Lagrangian density

L5
1

4
@~u18!21~u28!2#1

1

2
~u1

21u2
2!2

1

3A2
~u1

31u2
3!

2Qu1u2 . ~9!

To apply VA, we adopt the following ansatz~trial form! for
the solitary-wave solution, which is suggested by the spe
exact solution~6!, and also by analogy with VA for the soli
tons in the dual-core fiber with the cubic nonlinearity@18#:

u15Acosusech2S xWD , ~10!

u25Asinusech2S xWD , ~11!

whereA,W, andu are arbitrary amplitude, width, and asym
metry parameter of the soliton sought.

The next step is to insert Eqs.~10! and ~11! into Eq. ~9!,
and calculate the effective Lagrangian,
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L[E
2`

1`

Ldx5
4

15
A2W211

2

3
A2W

2
16

45A2
A3W~cos3u1sin3u!

2
2

3
QA2Wsin~2u!. ~12!

Finally, equations that determine the unknown parame
A,W, andu are obtained by demanding that variations of t
Lagrangian with respect to each of them are zero.

After some algebra, we arrive at the following resul
The variational equations have two different solutions, o
of which exists at allQ,1 and hasu[p/4. It is easy to
check that this solution coincides with the exact symme
soliton ~6!. The other, asymmetric solution is

u52
p

4
1
1

2
cos21z, ~13!

A55Q
sin~u1p/4!

sin~2u!
, ~14!

W5A2
5

6
z21Q~12z!S 11

1

2
z D , ~15!

where the auxiliary parameter

z[2sin~2u!5
5Q261A3~12220Q25Q2!

2Q
. ~16!

Further straightforward consideration shows that this as
metric solution exists in the interval of the coupling consta
values

21,Q,
3

8
~17!

@this limitation is imposed by the conditionusin(2u)u,1#,
which should be compared to the existence range of the s
metric soliton ~6!, Q,1. It is also easy to check that a
Q50, when Eqs.~7! and ~8! become decoupled, the varia
tional solution goes over into the exact one for the sin
waveguide@16#, while in the other waveguide the field i
absent. At small values ofuQu the solution is strongly asym
metric. In contrast with this, at the bifurcation poi
Q53/8 the solution coincides with the exact symmetric s
lution ~6! for the same value ofQ, and in the opposite limit,
Q→21 ~though we will show below that this limit does no
really exist!, the variational solution describes an almost a
tisymmetric soliton with a vanishing amplitudeA and a di-
verging widthW.

The valueQcr of the control parameterQ at the bifurca-
tion point can be foundexactly. Indeed, the bifurcation as
sumes the appearance of an unstable mode in the spectru
small perturbations around the exact symmetric solution~6!
whenQ becomes smaller thanQcr @18#. The change of sta
bility of this mode atQ5Qcr , in turn, suggests existence o
rs

.
e

c

-
t

m-

e

-

-

of

a zero mode(du,dv) at this value ofQ. One can easily find
that a nontrivial zero mode of the form

du52dv5asech3S 2

A13
xD , ~18!

wherea is an infinitesimal perturbation amplitude, exists
Q55/13. It is noteworthy that this zero mode, in contra
with the unperturbed symmetric solution, is antisymmetr
which indeed implies a transition to asymmetric solutions
a result of the bifurcation.

One can now compare the approximate and exact va
of Qcr , i.e., respectively, 3/850.3750 and 5/13'0.3846. The
relative error of our simple VA in predicting the bifurcatio
point is 2.5%, which is quite acceptable.

Proceeding to numerical analysis of the bifurcation a
asymmetric soliton states, we solved Eqs.~7! and ~8! by
means of the well-known shooting method, which w
implemented in terms of the fourth-order Runge-Kutta n
merical scheme. The analytical prediction and numerical
sults are summarized in Fig. 1, which represents abifurca-
tion diagram, i.e., a plot of the effective asymmetr
parameter cos(2u) @18# vs the control parameterQ @the
branch of the solution corresponding to the symmetric s
ton is cos(2u)[0; it is not specially marked in Fig. 1#. As
one sees, the agreement between VA and the numerica
sults is fairly good in the interval20.3,Q,0.35, cf. Eq.
~17!.

Very close to the bifurcation point, the shooting meth
becomes unstable because of large numerical fluctuati
but there is no doubt that the bifurcation takes place as
dicted by VA ~incidentally, this bifurcation is clearly super
critical, unlike the slightly subcritical one in the dual-co
fiber with the cubic nonlinearity@18#!. However, for
Q,20.3, the shooting method has never produced solita
wave solutions. Instead, it generated periodic waves. We
not consider them here at large, as the subject of this wor
the soliton, and periodic waves are usually unstable.

We have also directly compared dependences of the p
values of the variablesu1(x) and u2(x) on the control pa-

FIG. 1. The bifurcation diagram of the system~7!, ~8!. The
continuous line shows the analytical approximation, while the d
are results generated by the shooting method.
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55 6137SOLITONS IN COUPLED WAVEGUIDES WITH . . .
rameterQ, as predicted by VA and as given by the shooti
method. Within the same interval20.3,Q,0.35, they
prove to be fairly close. The worst case error is about 8
which happens at the smaller of the peak values ofu1 and
u2 when they are strongly asymmetric; i.e.,Q is close to 0. It
is interesting to add that, in this case, the larger peak va
achieves the best agreement between VA and the shoo
method; the error is less than 0.04%. Finally, as a partic
example, we display in Fig. 2 the analytically predicted a
numerically found shapes of the asymmetric soliton
Q50.1.

It remains unclear if another bifurcation is amenable
termination of the numerically found branch of the asymm
ric soliton solution atQ close to20.3. Nevertheless, the
above results furnish a sufficiently complete description
the stationary asymmetric solitons in the underlying mo
of the linearly coupled SHG waveguides.

FIG. 2. The shape of the asymmetric soliton atQ50.1. Shown
are the FH componentsu1,2: the analytical prediction~crosses! and
the results obtained by means of the shooting method~solid!.
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III. STABILITY OF THE ASYMMETRIC SOLITONS

To verify the stability of the stationary solitons found
the preceding section, we directly simulated the full syst
of partial differential equations~PDE’s! ~1!–~4!. The split-
step Fourier method~also called the beam propagatio
method! was employed. The method was implemented us
the third-order Runge-Kutta scheme, together with the
called transparent boundary condition algorithm@25#, which,
effectively, allows dispersive waves emitted by a perturb
soliton to be radiated away through the edges of the inte
tion domain, and thus eliminates the aliasing problem, i
distortion of the picture by waves reflected from the edg
In order to control the accuracy of the simulations, selec
runs ~especially those which produced unexpected resu!
were repeated with a smaller step size in the propaga
direction, and/or with a larger number of the points imp
menting the fast Fourier transform in the transverse dir
tion. These changes in the numerical scheme never prod
any conspicuous difference in the results.

The initial conditions used in the PDE simulations of t
asymmetric solitons were slightly different from the statio
ary solutions found by the shooting method: the peak val
of the waves were taken as given by the shooting meth
but for the pulse shapes, the VA analytical expressions~10!
and ~11! were plugged in. The aim in choosing the initi
conditions in this mixed form was twofold: first, it is muc
easier to insert the initial conditions into the numerical co
when they are known in an analytical form; second, a sm
deviation of the initial conditions from the~practically! exact
solitary-wave shape generated by the shooting seeds a s
perturbation which is necessary to observe the dynamics

In all the cases in which the asymmetric stationary so
tons were found by the shooting method, the PDE simu
tions have demonstrated their stability. A typical example
displayed, forQ50.1, in Fig. 3. In this figure, two well
separated solitons are seen. The first one is the largeu1 com-
ponent of the stationary soliton, while the second soliton
th
FIG. 3. An example of the evolution of a
slightly perturbed asymmetric soliton atQ50.1.
Shown are the fundamental harmonics in bo
waveguides.
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FIG. 4. Evolution of the peak values of th
componentsu1,2 andv1,2 illustrating the instabil-
ity of the symmetric soliton atQ50.1.
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x-
represented by the smallu2 component of essentially th
same solution~recall that atQ50.1 the solution is strongly
asymmetric, see Fig. 2!. The peak values of the componen
of the perturbed soliton undergo minor fluctuations~within
1%!. The fluctuations show no sign of decay, but they are
growing either ~to check this, we made some runs mu
longer!. Thus we conclude that all the stationary asymme
solitons are, in effect, neutrally stable.

We also ran simulations with large initial perturbations
the asymmetric solitons. Without displaying ponderous fi
ures, we can formulate an inference that strongly pertur
solitons demonstrate persistent internal vibrations, with
being destroyed by the perturbations, but also without em
ting conspicuous amounts of radiation. From a number
numerical simulations, it is known that stable solitons in t
t

c

f
-
d
t
t-
f
e

singleSHG nonlinear waveguide demonstrate similar pro
erties@1,26#.

We also checked numerically the stability of the exa
symmetric solutions~6!. First of all, one should expect tha
for Q,Qcr , the symmetric soliton must be destabilized
the bifurcation producing the stable asymmetric solitons.
is illustrated by Fig. 4, this is indeed the case. Moreover,
instability evolution illustrated by Fig. 4 demonstrates
trend to rearrange the unstable symmetric soliton into
stable asymmetric one existing at the same value ofQ. This
process is, though, quite slow, because it gives rise to str
internal vibrations of the solitary wave, for which, in acco
with a rather general property of the SHG systems mentio
above, the damping is very weak.

At Q.Qcr , the symmetric solitons are stable. An e
FIG. 5. The same as in Fig. 4 forQ50.4. In
this case, the symmetric soliton is~neutrally!
stable.
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FIG. 6. Evolution of the asymmetric soliton a
Q50.1 under the action of the walkoff term
with d50.1. The FH components are shown. Th
SH components are of the same shape, and
only difference from the FH components is ju
the amplitudes; thus they are not shown. Comp
ing this figure with Fig. 3, there is no essenti
difference, except a change in propagation dire
tion.
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ample, shown in Fig. 5 forQ50.4, shows that the initially
introduced perturbations trigger internal vibrations of t
solitary wave around the stationary symmetric solution. V
little damping can be seen, but the vibrations are not grow
either. Thus we conclude that the symmetric solitons here
also, effectively, neutrally stable, as the asymmetric solit
that exist beyond the bifurcation point.

As was said above, the asymmetric solitons had not b
found forQ,20.3. In this region~detailed simulations were
performed, e.g., atQ520.9), the symmetric solitons alway
demonstrate anoscillatory instability. At sufficiently large
negativeQ, simulation shows that the unstable symmet
solitons quite quickly decay into dispersive radiation.

In all the above consideration, we considered only
no-walkoff case,d50 in Eqs. ~1!–~4!. Because a spatia
walkoff will always be present in an experiment, it is cr
cially important to test the robustness of the asymmetric s
tons against adding walkoff into the model.

The investigation of this walkoff effect is now being un
dertaken, using direct PDE simulations. Preliminary res
showed that both asymmetric and symmetric solitons, if th
were stable in the absence of walkoff, remained stable,
vided d was not too large. For example, as shown in Fig.
the solitons are still stable whend50.1, which corresponds
to a misalignment of about 10°. At larged, say, 0.6, the
solitons have been shown, from numerical simulations, to
destroyed, for all values ofQ. A detailed account of the
walkoff effects will be presented elsewhere, when the inv
tigation is completed.

IV. CONCLUSION

We have formulated and analyzed a model describing
linearly coupled quadratically nonlinear waveguides. T
model includes two equations for the fundamental harm
ics, and two equations for the second harmonics. We h
y
g
re
s

en

e

i-

s
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o-
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considered in detail the most important special case of
walkoff and fully matched harmonics, when the only contr
parameter is the coupling constant, the same for both
monics. It was demonstrated that, alongside the obvi
symmetric solitons, the model supports asymmetric solit
waves. A bifurcation point at which the asymmetric solutio
appear was found exactly. A full description of these so
tions in an analytical form was based on a simple variatio
approximation. Comparison with numerical results obtain
by the shooting method has demonstrated that this appr
mation provides a fairly good accuracy in a part of the ran
where existence of the stationary asymmetric solitons w
predicted, while in another part of this range, asymme
solitary-wave solutions were not found, although period
solutions can be easily obtained. Direct simulations of
full PDE’s have shown that the asymmetric solitons, whe
ever they exist, are always neutrally stable. On the contr
the symmetric solitons are stable~effectively, also neutrally!
only to the right of the bifurcation point, where the asym
metric solitons do not exist. To the left of the bifurcatio
point, the symmetric soliton is found to be unstable, dem
strating a trend to rearrange itself into the stable asymme
soliton that exists at the same value of the coupling cons
Q . For negative values ofQ, where the asymmetric soliton
do not exist, the symmetric ones demonstrate a very diffe
oscillatory instability mode, sometimes quickly decayin
into radiation. Finally, some preliminary results, also
means of direct PDE simulations, demonstrate that the as
metric solitons survive and remain stable after add
walkoff to the model, provided that the new terms are not
large.

Thus the results obtained in this work point to the ex
tence of novel stable soliton states in the parallel-coup
second-harmonic-generating waveguides. As the next ste
is necessary to consider effects of a mismatch between
harmonics, and to analyze, in more detail, influence
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walkoff between the beams in the two waveguides. In a
case, the above results strongly suggest that the asymm
solitons are robust. Moreover, the strong dependence o
stable asymmetric solutions upon the effective coupling
rameter, or, in physical units, upon the energy of the be
may open ways to use these states for optical switching
d
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